Model Building with BoFire

This notebooks shows how to setup and analyze models trained with BoFire. It is still WIP.

Imports

from pydantic import TypeAdapter

import bofire.surrogates.api as surrogates
from bofire.benchmarks.multi import CrossCoupling
from bofire.benchmarks.single import Himmelblau
from bofire.data_models.domain.api import Outputs
from bofire.data_models.enum import CategoricalEncodingEnum
from bofire.data_models.surrogates.api import (
    AnySurrogate,
    EmpiricalSurrogate,
    MixedSingleTaskGPSurrogate,
    RandomForestSurrogate,
    RegressionMLPEnsemble,
    SingleTaskGPSurrogate,
)

Problem Setup

For didactic purposes, we sample data from a Himmelblau benchmark function and use them to train a SingleTaskGP.

benchmark = Himmelblau()
samples = benchmark.domain.inputs.sample(n=50)
experiments = benchmark.f(samples, return_complete=True)

experiments.head(10)
x_1 x_2 y valid_y
0 -2.541359 4.138623 57.722451 1
1 4.155561 3.631684 205.029894 1
2 3.909437 -2.325760 9.209412 1
3 -0.194106 3.313502 72.832123 1
4 1.791570 4.887348 357.284919 1
5 -0.447876 -5.965812 1073.103242 1
6 -0.126055 2.005681 90.242656 1
7 -1.482176 -5.696074 784.456947 1
8 5.599971 2.883037 587.997606 1
9 5.474180 -0.090305 358.619772 1

Model Fitting

input_features = benchmark.domain.inputs
output_features = benchmark.domain.outputs
input_features.model_dump_json()
'{"type":"Inputs","features":[{"type":"ContinuousInput","key":"x_1","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"x_2","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]}'
output_features.model_dump_json()
'{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"y","unit":null,"objective":{"type":"MinimizeObjective","w":1.0,"bounds":[0.0,1.0]}}]}'

Single Task GP

Generate the json spec

# we setup the data model, here a Single Task GP
surrogate_data = SingleTaskGPSurrogate(inputs=input_features, outputs=output_features)

# we generate the json spec
jspec = surrogate_data.model_dump_json()

jspec
'{"hyperconfig":{"type":"SingleTaskGPHyperconfig","hyperstrategy":"FractionalFactorialStrategy","inputs":{"type":"Inputs","features":[{"type":"CategoricalInput","key":"kernel","categories":["rbf","matern_1.5","matern_2.5"],"allowed":[true,true,true]},{"type":"CategoricalInput","key":"prior","categories":["mbo","threesix","hvarfner"],"allowed":[true,true,true]},{"type":"CategoricalInput","key":"scalekernel","categories":["True","False"],"allowed":[true,true]},{"type":"CategoricalInput","key":"ard","categories":["True","False"],"allowed":[true,true]}]},"n_iterations":null,"target_metric":"MAE","lengthscale_constraint":null,"outputscale_constraint":null},"engineered_features":{"type":"EngineeredFeatures","features":[]},"type":"SingleTaskGPSurrogate","inputs":{"type":"Inputs","features":[{"type":"ContinuousInput","key":"x_1","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"x_2","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]},"outputs":{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"y","unit":null,"objective":{"type":"MinimizeObjective","w":1.0,"bounds":[0.0,1.0]}}]},"input_preprocessing_specs":{},"dump":null,"categorical_encodings":{},"scaler":"NORMALIZE","output_scaler":"STANDARDIZE","kernel":{"type":"RBFKernel","features":null,"ard":true,"lengthscale_prior":{"type":"DimensionalityScaledLogNormalPrior","loc":1.4142135623730951,"loc_scaling":0.5,"scale":1.7320508075688772,"scale_scaling":0.0},"lengthscale_constraint":null},"noise_prior":{"type":"LogNormalPrior","loc":-4.0,"scale":1.0}}'

Load it from the spec

surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)

Map it

surrogate = surrogates.map(surrogate_data)

Fit it. This is not 100% finished. In the future we will call here hyperfit which will return the CV results etc. This has to be finished. So ignore this for now and just call fit.

surrogate.fit(experiments=experiments)

Dump it.

# dump it
dump = surrogate.dumps()

Make predictions.

# predict with it
df_predictions = surrogate.predict(experiments)
# transform to spec
predictions = surrogate.to_predictions(predictions=df_predictions)

Load again from spec and dump and make predictions.

surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
surrogate = surrogates.map(surrogate_data)
surrogate.loads(dump)

# predict with it
df_predictions2 = surrogate.predict(experiments)
# transform to spec
predictions2 = surrogate.to_predictions(predictions=df_predictions2)

# check for equality
predictions == predictions2
True

Random Forest

Generate the json spec

# we setup the data model, here a Single Task GP
surrogate_data = RandomForestSurrogate(
    inputs=input_features,
    outputs=output_features,
    random_state=42,
)

# we generate the json spec
jspec = surrogate_data.model_dump_json()

jspec
'{"hyperconfig":null,"engineered_features":{"type":"EngineeredFeatures","features":[]},"type":"RandomForestSurrogate","inputs":{"type":"Inputs","features":[{"type":"ContinuousInput","key":"x_1","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"x_2","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]},"outputs":{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"y","unit":null,"objective":{"type":"MinimizeObjective","w":1.0,"bounds":[0.0,1.0]}}]},"input_preprocessing_specs":{},"dump":null,"categorical_encodings":{},"scaler":"NORMALIZE","output_scaler":"STANDARDIZE","n_estimators":100,"criterion":"squared_error","max_depth":null,"min_samples_split":2,"min_samples_leaf":1,"min_weight_fraction_leaf":0.0,"max_features":1.0,"max_leaf_nodes":null,"min_impurity_decrease":0.0,"bootstrap":true,"oob_score":false,"random_state":42,"ccp_alpha":0.0,"max_samples":null}'
# Load it from the spec
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
# Map it
surrogate = surrogates.map(surrogate_data)
# Fit it
surrogate.fit(experiments=experiments)
# dump it
dump = surrogate.dumps()
# predict with it
df_predictions = surrogate.predict(experiments)
# transform to spec
predictions = surrogate.to_predictions(predictions=df_predictions)
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/botorch/models/ensemble.py:82: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/torch/nn/modules/module.py:2910: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/botorch/models/ensemble.py:82: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/torch/nn/modules/module.py:2910: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
surrogate = surrogates.map(surrogate_data)
surrogate.loads(dump)

# predict with it
df_predictions2 = surrogate.predict(experiments)
# transform to spec
predictions2 = surrogate.to_predictions(predictions=df_predictions2)

# check for equality
predictions == predictions2
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/botorch/models/ensemble.py:82: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/torch/nn/modules/module.py:2910: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/botorch/models/ensemble.py:82: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.

/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/torch/nn/modules/module.py:2910: RuntimeWarning:

Could not update `train_inputs` with transformed inputs since _RandomForest does not have a `train_inputs` attribute. Make sure that the `input_transform` is applied to both the train inputs and test inputs.
True

MLP Ensemble

Generate the json spec

# we setup the data model, here a Single Task GP
surrogate_data = RegressionMLPEnsemble(
    inputs=input_features,
    outputs=output_features,
    n_estimators=2,
)

# we generate the json spec
jspec = surrogate_data.model_dump_json()

jspec
'{"hyperconfig":null,"engineered_features":{"type":"EngineeredFeatures","features":[]},"type":"RegressionMLPEnsemble","inputs":{"type":"Inputs","features":[{"type":"ContinuousInput","key":"x_1","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"x_2","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]},"outputs":{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"y","unit":null,"objective":{"type":"MinimizeObjective","w":1.0,"bounds":[0.0,1.0]}}]},"input_preprocessing_specs":{},"dump":null,"categorical_encodings":{},"scaler":"IDENTITY","output_scaler":"IDENTITY","n_estimators":2,"hidden_layer_sizes":[100],"activation":"relu","dropout":0.0,"batch_size":10,"n_epochs":200,"lr":0.0001,"weight_decay":0.0,"subsample_fraction":1.0,"shuffle":true,"final_activation":"identity"}'
# Load it from the spec
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
# Map it
surrogate = surrogates.map(surrogate_data)
# Fit it
surrogate.fit(experiments=experiments)
# dump it
dump = surrogate.dumps()
# predict with it
df_predictions = surrogate.predict(experiments)
# transform to spec
predictions = surrogate.to_predictions(predictions=df_predictions)
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
surrogate = surrogates.map(surrogate_data)
surrogate.loads(dump)

# predict with it
df_predictions2 = surrogate.predict(experiments)
# transform to spec
predictions2 = surrogate.to_predictions(predictions=df_predictions2)

# check for equality
predictions == predictions2
True

Empirical Surrogate

The empirical model is special as it has per default no fit and you need cloudpickle. There can be empirical models which implement a fit, but for this they also have to inherit from Trainable. The current example is the default without any fit functionality.

from botorch.models.deterministic import DeterministicModel
from torch import Tensor


class HimmelblauModel(DeterministicModel):
    def __init__(self):
        super().__init__()
        self._num_outputs = 1

    def forward(self, X: Tensor) -> Tensor:
        return (
            (X[..., 0] ** 2 + X[..., 1] - 11.0) ** 2
            + (X[..., 0] + X[..., 1] ** 2 - 7.0) ** 2
        ).unsqueeze(-1)
surrogate_data = EmpiricalSurrogate(

    inputs=input_features,
    outputs=output_features,
)

# we generate the json spec
jspec = surrogate_data.model_dump_json()

jspec
'{"type":"EmpiricalSurrogate","inputs":{"type":"Inputs","features":[{"type":"ContinuousInput","key":"x_1","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"x_2","unit":null,"bounds":[-6.0,6.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]},"outputs":{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"y","unit":null,"objective":{"type":"MinimizeObjective","w":1.0,"bounds":[0.0,1.0]}}]},"input_preprocessing_specs":{},"dump":null,"categorical_encodings":{}}'
# Load it from the spec
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
# Map it
surrogate = surrogates.map(surrogate_data)
# attach the actual model to it
surrogate.model = HimmelblauModel()
# dump it
dump = surrogate.dumps()
# predict with it
df_predictions = surrogate.predict(experiments)
# transform to spec
predictions = surrogate.to_predictions(predictions=df_predictions)
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
surrogate = surrogates.map(surrogate_data)
surrogate.loads(dump)

# predict with it
df_predictions2 = surrogate.predict(experiments)
# transform to spec
predictions2 = surrogate.to_predictions(predictions=df_predictions2)

# check for equality
predictions == predictions2
True

Mixed GP

Generate data for a mixed problem.

benchmark = CrossCoupling()
samples = benchmark.domain.inputs.sample(n=50)
experiments = benchmark.f(samples, return_complete=True)

experiments.head(10)
base_eq t_res temperature base catalyst yield cost valid_cost valid_yield
0 1.819262 925.162985 87.310768 TEA tBuBrettPhos 0.043161 0.278933 1 1
1 1.674939 801.003841 45.329957 TEA tBuXPhos 0.022520 0.248849 1 1
2 2.019877 1544.568937 86.981188 BTMG AlPhos 0.952132 0.507239 1 1
3 1.593399 1488.324851 84.459192 BTMG tBuBrettPhos 1.028752 0.347870 1 1
4 1.641909 1460.413218 81.588178 DBU tBuXPhos 1.013929 0.250032 1 1
5 1.743029 1653.295575 34.840946 TMG tBuXPhos 0.137584 0.248303 1 1
6 1.462793 417.565586 78.648540 DBU tBuBrettPhos 0.901021 0.279868 1 1
7 1.879398 1141.892133 53.340957 BTMG AlPhos 1.009842 0.501103 1 1
8 1.739406 230.367045 93.174753 TMG AlPhos 0.916416 0.419074 1 1
9 1.432316 249.458281 53.145688 DBU AlPhos 0.619239 0.420575 1 1
# we setup the data model, here a Single Task GP
surrogate_data = MixedSingleTaskGPSurrogate(
    inputs=benchmark.domain.inputs,
    outputs=Outputs(features=[benchmark.domain.outputs.features[0]]),
    categorical_encodings={"catalyst": CategoricalEncodingEnum.ORDINAL},
)

# we generate the json spec
jspec = surrogate_data.model_dump_json()

jspec
'{"hyperconfig":{"type":"MixedSingleTaskGPHyperconfig","hyperstrategy":"FractionalFactorialStrategy","inputs":{"type":"Inputs","features":[{"type":"CategoricalInput","key":"continuous_kernel","categories":["rbf","matern_1.5","matern_2.5"],"allowed":[true,true,true]},{"type":"CategoricalInput","key":"prior","categories":["mbo","threesix","hvarfner"],"allowed":[true,true,true]},{"type":"CategoricalInput","key":"ard","categories":["True","False"],"allowed":[true,true]}]},"n_iterations":null,"target_metric":"MAE"},"engineered_features":{"type":"EngineeredFeatures","features":[]},"type":"MixedSingleTaskGPSurrogate","inputs":{"type":"Inputs","features":[{"type":"CategoricalDescriptorInput","key":"catalyst","categories":["tBuXPhos","tBuBrettPhos","AlPhos"],"allowed":[true,true,true],"descriptors":["area_cat","M2_cat"],"values":[[460.7543,67.2057],[518.8408,89.8738],[819.933,129.0808]]},{"type":"CategoricalDescriptorInput","key":"base","categories":["TEA","TMG","BTMG","DBU"],"allowed":[true,true,true,true],"descriptors":["area","M2"],"values":[[162.2992,25.8165],[165.5447,81.4847],[227.3523,30.554],[192.4693,59.8367]]},{"type":"ContinuousInput","key":"base_eq","unit":null,"bounds":[1.0,2.5],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"temperature","unit":null,"bounds":[30.0,100.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false},{"type":"ContinuousInput","key":"t_res","unit":null,"bounds":[60.0,1800.0],"local_relative_bounds":null,"stepsize":null,"allow_zero":false}]},"outputs":{"type":"Outputs","features":[{"type":"ContinuousOutput","key":"yield","unit":null,"objective":{"type":"MaximizeObjective","w":1.0,"bounds":[0.0,1.0]}}]},"input_preprocessing_specs":{"base":"ORDINAL","catalyst":"ORDINAL"},"dump":null,"categorical_encodings":{"catalyst":"ORDINAL","base":"DESCRIPTOR"},"scaler":"NORMALIZE","output_scaler":"STANDARDIZE","continuous_kernel":{"type":"RBFKernel","features":["temperature","base","base_eq","t_res"],"ard":true,"lengthscale_prior":{"type":"DimensionalityScaledLogNormalPrior","loc":1.4142135623730951,"loc_scaling":0.5,"scale":1.7320508075688772,"scale_scaling":0.0},"lengthscale_constraint":{"type":"GreaterThan","lower_bound":0.025}},"categorical_kernel":{"type":"HammingDistanceKernel","features":["catalyst"],"ard":true,"lengthscale_prior":null,"lengthscale_constraint":{"type":"GreaterThan","lower_bound":1e-6}},"noise_prior":{"type":"LogNormalPrior","loc":-4.0,"scale":1.0}}'
# Load it from the spec
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
# Map it
surrogate = surrogates.map(surrogate_data)
# Fit it
surrogate.fit(experiments=experiments)
# dump it
dump = surrogate.dumps()
# predict with it
df_predictions = surrogate.predict(experiments)
# transform to spec
predictions = surrogate.to_predictions(predictions=df_predictions)
surrogate_data = TypeAdapter(AnySurrogate).validate_json(jspec)
surrogate = surrogates.map(surrogate_data)
surrogate.loads(dump)

# predict with it
df_predictions2 = surrogate.predict(experiments)
# transform to spec
predictions2 = surrogate.to_predictions(predictions=df_predictions2)

# check for equality
predictions == predictions2
True